Complex Zeros and the Fundamental Theorem of Algebra

Fundamental Theorem of Algebra

This theorem seems strangely incomplete.
"Every polynomial has a complex root"

Note that by a complex root we mean either a real number, an imaginary number or a complex number. Real and imaginary numbers are also complex numbers.

To complete theorem, consider a polynomial of degree n with root c.
Since c is a root of the polynomial,
$P(c)=0$

The factor theorem tells us that $(x-c)$ is a factor of $P(x)$ meaning that there is a polynomial $Q(x)$ such that
$P(x)=(x-c) Q(x)$

We know that $Q(x)$ will have degree $n-1$.

So we can repeat this process n times finding n roots of $P(x)$

This gives us our next theorem

The Complete Factorization Theorem

A polynomial of degree n will have n complex roots.

Factoring a Polynomial by Grouping

Example
$P(x)=x^{3}-3 x^{2}+x-3$
We group the first two and the 2 nd two terms
$P(x)=\left(x^{3}-3 x^{2}\right)+(x-3)$
and factor out x^{2} from the first group
$P(x)=x^{2}(x-3)+(x-3)$
Here we see we can factor out ($x-3$)

$$
P(x)=(x-3)\left(x^{2}+1\right)
$$

The factor $\left(x^{2}+1\right)$ is irreducible in just real numbers, however it is easily factored using complex numbers

$$
\left(x^{2}+1\right)=(x+i)(x-i)
$$

So finally we have

$$
P(x)=(x-3)(x+i)(x-i)
$$

And so the three roots are $3, i$, and $-i$

Factoring a Polynomial using the Rational Root Theorem

Example

$$
P(x)=x^{3}-2 x+4
$$

The rational root theorem tells us that the possible roots are
$\pm 1, \pm 2, \pm 4$
By trial and error we find that -2 is a root.
We divide using synthetic division

$- 2 \longdiv { 1 }$	0	-2	4
	-2	4	-4
1	-2	2	0

So $x^{3}-2 x+4=(x+2)\left(x^{2}-2 x+2\right)$

At this point we use the quadratic formula to find the roots of $x^{2}-2 x+2$

$$
\frac{2 \pm \sqrt{4-8}}{2}=\frac{2 \pm \sqrt{-4}}{2}=1 \pm i
$$

So the complete factorization is $P(x)=(x+1)(x-1+i)(x-1-i)$

Multiplicity of Zeros

Although a polynomial of degree n will have n roots, they do not have to be distinct.
As a trivial example
$(x-1)^{5}$ has 5 roots, but they are all 1.
We say the polynomial has a root 1 of multiplicity 5 .

Example

$$
P(x)=3 x^{5}+24 x^{3}+48 x
$$

First we factor out $3 x$
$3 x^{5}+24 x^{3}+48 x=3 x\left(x^{4}+8 x^{2}+16\right)$
The left factor is a disguised quadratic in the form of a perfect square, so we get
$3 x\left(x^{4}+8 x^{2}+16\right)=3 x\left(x^{2}+4\right)^{2}$
Further factoring gives up
$3 x\left(x^{4}+8 x^{2}+16\right)=3 x(x+2 i)(x-2 i)(x+2 i)(x-2 i)=3 x(x+2 i)^{2}(x-2 i)^{2}$
So the polynomial has 5 roots including $0,2 i$, and $-2 i$ but $2 i$ and $-2 i$ each have multiplicity 2 .

Finding a polynomial with specified roots

Finding a polynomial with specified roots is straight forward.
If we have a list of roots $c_{1}, c_{2}, \ldots c_{n}$ then our polynomial is just the product of a constant and x minus each root

$$
P(x)=a\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{n}\right)
$$

Example

Find a polynomial with roots $i,-i, 2,-2$ where $P(3)=25$
$P(x)=a(x-i)(x+i)(x-2)(x+2)=$
$a\left(x^{2}+1\right)\left(x^{2}-4\right)=$
$a\left(x^{4}-3 x^{2}-4\right)$

Since we know $P(3)=25$
$P(3)=a(81-27-4)=a 50=25$
so
$a=\frac{1}{2}$
$P(x)=\frac{1}{2}\left(x^{4}-3 x^{2}-4\right)=\frac{1}{2} x^{4}-\frac{3}{2} x^{2}-2$

Conjugate zeros theorem

You may have noticed that complex roots seem to come in pairs
$a+b i$ and $a-b i$
These are call complex conjugates, or just conjugates when the context is clear.
The conjugate zeros theorem states that when a polynomial has real coefficients, that any complex roots will come as conjugate pairs.

Example
Find a polynomial with real coefficients that has roots $1 / 2$ and $3-i$.
Since the polynomial has real coefficients and a root 3-i it must also have it's complex conjugate $3+i$.

$$
P(x)=(2 x-1)(x-(3-i))(x-(3+i))
$$

Using Foil
$(x-(3-i))(x-(3+i))=x^{2}-(3+i) x-(3-i) x+\left(3^{2}+1\right)=$ $x^{2}-6 x+10$

Then
$(2 x-1)\left(x^{2}-6 x+10\right)=2 x^{3}-12 x^{2}+20 x+{ }^{-} x^{2}+6 x-10=$
$2 x^{3}-13 x^{2}+26 x-10$

Linear \& Quadratic Factors Theorem.
A quadratic polynomial that has no real zeros is called irreducible.
The linear and quadratic factors theorem says that every polynomial with real coefficients can be factored into a product of linear $(x-\mathrm{c})$ factors and irreducible quadratic factors.

Example
$P(x)=x^{4}-2 x^{2}-8$
This is a disguised quadratic that we can reverse foil
$x^{4}-2 x^{2}-8=\left(x^{2}+2\right)\left(x^{2}-4\right)=\left(x^{2}+2\right)(x+2)(x-2)$
Note that we have factored to two linear factors
$(x+2)(x-2)$ and an irreducible factor $\left(x^{2}+2\right)$
The irreducible factor can be further factored only with complex numbers into $\left(x^{2}+2\right)=(x+\sqrt{2} i)(x-\sqrt{2} i)$

